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ABSTRACT

The tip vortex flow field has a significant influence on the performance
of a ship propeller. The ability to compute the tip vortex flow field would be
a valuable aid in the design of ship propellers, and in the analysis of their
performance. The present report demonstrates the feasibility of computing the
tip vortex generation process with a forward-marching computation procedure.
For the purpose of this study, turbulent flow test cases were considered. The
results of the computations were compared with experimental data from Gray et
al. (Ref. 1), and demonstrate the capability of the forward-marching procedure
to accurately compute the flow processes in the tip vortex generation. The
flow field is computed from a set of three-dimensional viscous flow equations

with no empiricism introduced for the vorticity generated and shed at the

propeller tip.(jﬂjﬁ.
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NOMENCLATURE

Blade chord

(2]

Pressure coefficient

- T o]
ke

Force due to viscous stress (Eq. 10)
Unit vector normal to transverse coordinate surface
Primary flow direction

Orthonormal vectors in the transverse coordinate surface

-
ey
N

Static pressure

wl o [t B e S 4

Force due to a rotating coordinate system (Eq. 10)

=
1]

Reynolds number
Velocity vector

Primary flow velocity

)

Secondary flow velocity vector

<l Gl o i
]

0

Known vector field in the transverse coordinate surfaces (e.g.
the transverse component of an inviscid flow velocity vector
field)

Ve Tangential component of the Vs: and ¢-contributions to the
secondary velocity at a solid boundary.

x Distance from the blade leading edge

X1, X2 X3 Coordinates in the 11—, iz-, and in- direction, respectively

a Angle of incidence of the blade
P Density
Po Reference density (constant)
¢ Scalar potential (Eq. 3)
Vector surface potential (Eq. 3)
Secondary vorticity, f.e., vorticity based on the secondary
flow within the transverse surfaces (Eq. 7)
Gradient operator

Surface gradient operator (Eq. 4)
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1. INTRODUCTION

The tip vortex flow field plays a significant role in the performance of a
ship propeller. The low pressure region found at the center of a tip vortex
may lead to cavitation. The presence of cavitation in the flow field has
serious consequences in terms of structural, acoustic and performance
considerations. A better understanding of the tip vortex generation process
and a method of analyzing the tip vortex flow field would provide valuable help
in the design of ship propellers.

The flow field in the tip region is complex, three-dimensional, and
viscous, with large secondary velocities. A qualitative picture of the tip
region flow field in a cross-section normal to the primary flow direction is
shown in Fig. 1. As can be seen here, the transverse velocity along the tip
changes direction in the vicinity of the tip vortex, a phenomenon commonly
referred to as cross-flow separation. The large secondary velocities and the
occurrence of cross-flow separation preclude the possibility of using
conventional boundary layer solution techniques to compute the tip vortex flow
field. On the other hand, a solution of the full Navier-Stokes equations that
adequately resolves the tip vortex flow field would require formidable
computational resources. A more economical approach is the use of an
approximate set of three-dimensional viscous flow equations which 1is applicable
to the tip vortex flow field but which does not require the resources needed
for the solution of the full Navier-Stokes equations. The parabolized
Navier-Stokes equations discussed in Section 2 represent such a set. These
equations contain in them all the physical processes of tip vortex generation
and can be solved economically by forward marching procedures.

The attractive possibility of using a forward-marching procedure Lo
compute the tip vortex generation process was first examined by Shamroth and
Briley (Ref. 2), and more recently by Lin et ai. (Ref. 3) and Govindan et al.
(Ref. 4). This report provides a quantitative assessment of the validity of
this procedure for the tip vortex analysis. With the focus being on the
computation of the vortex generation process, effects of blade leading and
trailing edges and hub effects were neglected. The test cases were chosen to
allow a data comparison to be made. Thus, geometry cousisted of a straight
blade with an NACA 0012 airfoil section and a rounded tip (a half-body of 4

revolution, see Fig. 2). The results of the turbulent flow calculations were
..1..
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compared with experimental surface pressure measurements in the tip region by
Gray et al. (Ref. 1). A brief outline of the forward-marching procedure and a
discussion of the results of the computation of the vortex generation process

are presented in this report.

2. THE FORWARD MARCHING COMPUTATION PROCEDURE
FOR SHIP PROPELLER TIP FLOW FIELDS

The forward marching computation procedure used for the solution of the
parabolized Navier-Stokes equations provides an economical and accurate method
for computing many three-dimensional viscous flow fields. This procedure,
initially developed for internal flow fields (Refs. 5-7), has been extended to
the computation of the ship propeller tip flow field. The governing equations
and the computational scheme are presented in this section. This procedure is
capable of considering both fixed and rotating coordinate systems.

Governing equations are derived through approximations made relative to a
curvilinear coordinate system fitted to and aligned with the flow geometry
under consideration. The coordinate system is chosen such that the streamwise
or marching coordinate either coincides with or is at least approximately
aligned with a known inviscid primary flow direction as determined, for
example, by a potential flow for the given geometry. Transverse coordinate
surfaces must be approximately perpendicular to solid walls or bounding
surfaces, since diffusion is permitted only in these transverse coordinate
surfaces.

Equations governing the primary flow velocity Up and a secondary
vorticity Q, normal to transverse coordinate surfaces are derived utilizing
approximations which permit solution of the governing equations as an initial-
value problem, provided reversal of the composite streamwise velocity does not
occure Terms representing diffusion normal to transverse coordinate surfaces
(in the streamwise direction) are neglected. The pressure gradient term that
appears in the streamwise momentum equation is assumed known (for example from
an a priorl potential flow solution for the geometry under consideration).
Secondary flow velocities are determined from scalar and vector surface
potential calculations in transverse coordinate surfaces, once the primary

velocity and secondary vorticity are known. With the computed velocity field,

the pressure field associated with the velocity field can be determined. For
-2-
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compressible flow, an equation is added for the density, and for high Reynolds

number flows, a turbulence model is specified.

2.1 Primary-Secondary Velocity Decomposition

In what follows, vectors are denoted by an overbar, and unit vectors by a
caret. The analysis is based on decomposition of the overall velocity vector
field U into a primary flow velocity ﬁp and a secondary flow velocity ﬁs-

The overall or composite velocity 1is determined from the superposition

p + Us (1)

U, = U1 (2)

where ip is a known primary flow direction determined, for example, from an

a priori potential flow solution for the geometry under consideration. A
streamwise coordinate direction from a body fitted coordinate system could be
used as an approximation to this flow direction. The primary velocity ﬁp is
determined from solution of a primary flow momentum equation in which the
streamwise pressure gradlient term is assumed known. The secondary flow
velocity ﬁs is derived from scalar and vector surface potentials, denoted by
¢ and ¢, respectively. If in denotes the unit vector normal to transverse
coordinate surfaces, if p is density, and if p, is an arbitrary constant

reference density, then ﬁs is defined by

[
1]

PO gus =
Vo + . Vxi ¥ + V. (3)

where Vg 1s the surface gradient operator defined by
Ve =V - 1(1,e7) (4)

and where Vs is an arbitrary known vector field in the transverse coordinate
surfaces. This vector fleld is usually set to zero; for the tip vortex flow

analysis, however, Vs is the transverse component of an inviscid flow
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velocity computed for the geometry under consideration. This choice of Vs O
facilitates the formulation of the boundary conditions, as will be seen in '
Section 2.11. It follows that since in . ﬁs =0, ﬁs lies entirely within
transverse coordinate surfaces. Equation (3) is a general form permitting both
rotational and irrotational secondary flows and will lead to governing
equations which may be solved as an initial-boundary value problem. The ;g:

overall velocity decomposition (1) can be written as

__= a p_o ~ - "A
T=ut +V ¢+20 Uxt ¥ +V, (5) W

2.2 Surface Potential Equations hry

Equations relating ¢ and ¢ with U,, p, and the secondary vorticity o

component R, can be derived using Eq. (5) as follows: From continuity, @
L3 ,g.“

VepU =0 = V-pUpip + VepVgd TN

+ VepVg + poVeVxipny (6) L]

and from the definition of the vorticity based on the secondary flow within the N

:
transverse surfaces, @, (N

{ VxU=Q =1 VU1 + 1 +vx PO yxi
n n n ) n D n

-~ " (7) “(’.‘
+ 1,09xVg + 1,°7xVg0 °

Since the last term in each of Eqs. (6) and (7) is zero by vector identity, b
Eqs. (6) and (7) can be written as Bt

VepVgh = —v-pupip - VepVg (8) o

“
and '“2

£ Ux PO yxi y =0 -1 +9xU 1 -1 +VxV (9) o
n o} n n n PP n s

4= :.:o.v
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Note that the term in~VxUpip in Eq. (9) is identically zero in a

coordinate system for which in and ip have the same direction, and would be
small if in and ip are approximately aligned. The term in-Vsz

is zero 1if Vs comes from a potential flow solution. In any event, given a
knowledge of ﬁp, Qn, and p, the surface potentials ¢ and ¢ can be

determined by a two—-dimensional elliptic calculation in transverse coordinate
surfaces at each streamwise location. In turn, ﬁs can be computed from Eq.
(3), and the composite velocity U will satisfy continuity. Equations for Up
and @, are obtained from the equations governing momentum and vorticity,

respectively.

2.3 Streamwise Momentum

The streamwise momentum equation is given by
ip'[(pﬁ°V)ﬁ + Vp] = ip-pﬁ + ip-pi (10)

Here, p is the pressure, pf is the force due to viscous stress, and p§ is the

additional force due to a rotating coordinate system:
R=-20 xU - wx(w x r)

where w is the angular velocity of the coordinate system and r is the radius
vector from the rotation axis. Terms in F representing streamwise diffusion
are neglected. The pressure term in the streamwise momentum equation (10) can

be taken from a simpler analysis such as a potential flow analysis.

2.4 Secondary Vorticity

The equation governing Q, is obtained by cross differentiating each of

the transverse momentum equations:
1;+[(pUsv)T + Vp - pF - pR] = 0

120[(pﬁ-v)ﬁ + Vp - oF - pﬁ] =0 (11)

RURNUNLNETW
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where il and fz are two orthonormal vectors in the transverse coordinate
surface. Eliminating the pressure in the two equations results in a single

equation for the transport of the vorticity normal to the transverse surface.

This equation has the form
pUsVQ, ~ QeVpU, = G, + C + i, (VxpR) (12)

where Q = VxU is the vorticity vector, G, 1s the normal component of

G = pri (13)

i and C is a collection of curvature terms arising from changes in orientation of

f;g the transverse surfaces as a function of the streamwise coordinate.
W
2.5 Pressure Equation
i
32_ While the above procedure results in a set of equations which can be
%ﬁ' solved by forward marching, the surface pressures which are due to the pressure
) field imposed upon the flow are the potential flow pressures. Since the actual
:§: surface pressures are often of primary interest, a new estimate of the actual
ﬁ; surface pressure which includes viscous and secondary flow effects can be
'?i computed from the resulting velocity field in the following manner. The
i momentum equations (11) in the transverse surfaces represent components of the
j?f momentum vector in the transverse surfaces:
-
1,3+ [(pT-)T + Vp - pF - pR]) +
izi: 1,d2+[(pT-9)T + vp - pF - oR]) (14)
;iﬁ The divergence of this vector can be written as a Poisson equation for the
pressure p at each transverse surface:
&
3 762p = Vs2(p1 + pe) = - —— (11+[ (0T-V)T - pF - pR])
i‘l’-"; Ix1
& (15)
o - 5%; (;20[(pﬁ-V)ﬁ - pF - Dﬁ])

-6-
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where py is the imposed pressure, p. is a viscous correction to the
pressure field and x; and x, are coordinates in the ix and fz directions,
respectively. Equation (15) can be solved for the pressure correction p. at
each computational station using Neuman boundary conditions derived from Eq.
(14). The use of Neuman boundary conditions requires an additional parameter
which is only a function of the normal direction, py(x3), in order to set the
level of the pressure field. For external flows, py(x3) is set to match the
imposed pressure at an appropriate far field location, obtained, for example,
from an a priori potential flow solution for the geometry under consideration.
In the actual numerical solution procedure, the streamwise (x3-)
derivatives of the scalar potential (¢~) velocities are not always smooth, and
their effect on the pressure field computed from Eq. (15) can be detrimental.
Therefore, the terms §§é (Vg4) that are part of the (pUsV)U terms in Eq. 15

are neglected. This approximation leads to improved accuracy of the computed
viscous pressure field, as verified by comparison with experimental data.

2.6 The Gas Law Equation

For incompressible flow, density is a constant value and the Eqs. (10),
(12), (8), (9), and (15) form the required governing set. For compressible
flow, an additional equation relating the density to the other flow variables

i1s required. Such an equation is obtained from the perfect gas law

p = pRT (16)

where R is the gas constant. Assuming constant total temperature Ty, Eq. (16)
can be written as

U-0
= pR(Ty - —) (17)
P v

P
where Cp 1s the heat capacity of the gas at constant pressure. Equatlon (17)
relates density, pressure, and velocity. If the total temperature assumption
is inadequate, an energy equation can be added to the system and solved coupled
with the streamwise momentum equation.

2.7 Turbulence Model

In the high Reynolds number flows addressed in this report, it is nec-

essary to specify a turbulence model. At present, a simple mixing length type




model is used in the analysis. In internal flow applications of this analysis,

quantitatively accurate flow simulations have been obtained with a mixing-
length approach (Refs. 5, 7, 8). The mixing~length turbulence model employed

here computes an eddy viscosity ut from the expression (Ref. 9):
T = p92(Jete)l/? (18)
Re

where Re is the Reynolds number, e is the mean flow rate of strain tensor

[ X]

- %.[vﬁ + (VDT (19)

and £ is the mixing length determined from the empirical relationship of
McDonald and Camarata (Ref. 10) for equilibrium turbulent boundary layers:

2(y) = 0.09 &y tanh[—L_]p (20)
0.098,

Here, y is the distance from the wall, 8y is the local boundary layer

thickness, « is the Von Karman constant (taken as 0.43), and D is a sublaver
damping factor

+ =+
D = pt/2(L Y} (21)

where P is the normal probability function, o = 8, ;+ = 23, and

v - a0/ (22)
(u/p)

with t being the local shear stress and p the viscosity of the fluid.

2.8 Governing System of Equations

A complete system of five coupled equations governing Up, U, ¢, ¥,

and p is given by Egs. (10), (12), (8), (9), and (15). For compressible flows,

Eq. (17) is added for p. The ancillary relations (5) and (18)-(22) are given
for the composite velocity and the eddy viscosity. 1In Ref. 6 the governing

equations are given in general orthogonal coordinates, and in Ref. 7 in

nonorthogonal coordinates.
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2.9 Numerical Method

2

Since techniques for obtaining the basic potential flow solution are well )
‘ known and numerous, they need not be enumerated or discussed here. Instead, 5
the present development concentrates on describing the numerical method used to n
\ solve the system of governing equations. Streamwise derivative terms in the &
governing equations have a form such as Upa( )/3x3, and because the )
streamwise velocity Up is very small in the viscous dominated region near ;i
i no-slip walls, it 1is essential to use implicit algorithms which are not subject $
to stringent stability restrictions unrelated to accuracy requirements. $

Although it 1s possible to devise algorithms for the solution of the governing ’

E equations as a fully coupled implicit system, such algorithms would require Eﬁ
. i
i considerable iteration for the system of equations treated here, and this would 5
¥ detract from the overall efficiency. The present method is semi-implicit and :
seeks to reduce the amount of iteration required and yet avoid the more severe L

' stability restrictions of explicit algorithms. The method partitions the 'S
| system of governing equations into subsystems which govern the primary flow, ‘%
5 the secondary flow, and the turbulence model. The primary-flow subset of Lg
equations contains the streamwise momentum equation {(plus an energy equation, ;
E if needed). The secondary-flow subset of equations contains the secondary g
" vorticity equation and the scalar and vector potential equations. These é
i subsystems are decoupled using an ad hoc linearization in which secondary Lt
] velocity components and turbulent viscosity are lagged, and are solved “
5 sequentially during each streamwise step. g
Y “’
? 2.10 Summary of Algorithm ?
) 0

The governing equations are replaced by finite—difference approximations.
Three—point central difference formulas are used for all transverse spatial

X derivatives. Analytical coordinate transformations are employed as a means of

appropriate, to concentrate grid points in the wall boundary layer regions.
Second-order accuracy for the transverse directions is rigorously maintained.
Two~point backward difference approximations are used for streamwise

derivatives, although this 1is not essential.

>
i
, introducing a nonuniform grid in each transverse coordinate di..ection, as g
-9— g
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To solve the primary flow subsystem of viscous equations, a scalar ADI

scheme is used for the momentum equation.

Given the solution for the primary flow, the secondary flow subsystem can

be solved. First, the scalar potential equation (continuity) is solved using a

scalar iterative ADI scheme. Next, the secondary vorticity and vector
potential equations are written as a fully implicit coupled system and solved
using an iterative linearized block implicit (LBI) scheme (cf. Briley and
McDonald, Ref. 11). 1In selecting boundary conditions for the secondary flow
subsystem, care must be taken to ensure that the final secondary velocitv
satisfies the no-slip condition accurately. In the scalar potential equation
the normal derivative of ¢ is set equal to minus the normal component of Vs'
This boundary condition corresponds to zero normal velocity. It is not
possible to simultaneously specify the tangential velocity, however, and thus
the Vs— and ¢-contributions to the secondary velocity will have a nonzero
tangential (slip) component, denoted Vi, at solid boundaries. In the coupled
vorticity and vector—potential equations, both the normal and the tangential
velocity component can be specified as boundary conditions, since these
equations are solved as a coupled system. By choosing (a) zero normal
velocity, and (b) minus Vi as the y-contribution to the tangential velocity,
the slip velocity Vi arising from the ¢ calculation is cancelled, and the
composite secondary flow velocity including VS, ¢, and ¢y contributions wiil
satisfy the no-slip condition exactly.

A summary of the overall algorithm used to advance the solution a single
axial step follows. It is assumed that the solution is known at the n-level

x3? (the nth transverse plane) and is desired at x30+l,

(1) The imposed streamwise pressure gradient distribution and the vector

field Vs are determined from an inviscid potential flow.

(2) The momentum equation is solved to determine Up“+1. For

compressible flows, pM*l {5 obtained from Eq. (17).

(3) Using values now available for pn*l and Up“+1, the scalar
potential equation (8) is solved using an iterative scalar ADI
scheme, to obtain ¢“+1. This ensures that the continuity equation

is satisfied.

_10_
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:f (4) The equations for vorticity (12) and vector potential (9) form a
by coupled system for Qn“+1 and W“+1 which 1s solved as a coupled

system using an iterative LBI scheme.

4 (5) Values for the two components of the transverse velocity vector ﬁs

are computed from Eq. (3).

‘? (6) Using the computed velocity field, the transverse pressure field is

e computed from Eq. (13) by an iterative scalar ADI scheme.
(7) The eddy viscosity is updated using Eqs. (18)-(22).

o 2.11 Boundary Conditions for the Tip Vortex Flow Computations

Figure 2 shows a perspective view of a straight blade with NACA 0012

L8 airfoil section and a rounded tip. For this case, the transverse coordinate
surfaces were taken normal to the chord line of an airfoll section. TFigure 3
i shown a cross—section of the blade tip and the computational grid at a typical
‘ streamwise station. A computational grid that wraps around the tip was chosen
to provide adequate resolution of the tip region and a smooth grid
distribution.

o The cross—-sectional computational coordinate system, shown in Fig. 3, has

four boundaries where boundary conditions for the governing equations must be

&& specified. Inboard are boundaries AB and CD, the blade surface 1s boundary BC,
ﬁ{ and the far field is boundary AD. Boundary conditions must be specified for

$£ the streamwise velocity in the streamwise momentum equation, for the scalar

o potential in the scalar potential equation, and for the vector potential and
vg? streamwise vorticity in the coupled vector potential - streamwise vorticity

$§ equations. The conditions that were specified for the tip vortex flow

k& computations are considered in this section.

g The flow at the inboard boundaries AB and CD was assumed to be quasi

two-dimensional (no spanwise variation). The streamwise velocity was
extrapolated from the interior flow field, and the normal gradient of the
)y scalar potential was set to zero. The vector field Vs was assumed to be
derived from an inviscid flow field for the geometry under consideration.

) Neglecting spanwise variations, the coupled vector potential - vorticity
1
: -11-
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equations were solved as two-point boundary value problems along the inboard k??
boundaries. Boundary conditions for these problems were the no-slip and no gg&
through-flow velocity conditions on the blade surface (at B and C of Fig. 3), P
and the inviscid spanwise velocity and zero streamwise vorticity at the outer ﬂgf
boundary (at A and D of Fig. 3). Since the inviscid spanwise velocity is Ei;
included in Vs, these boundary conditions pose no special problems. The ;3?
solutions to the boundary value problems were used as function boundary Sy
conditions on the vector potential and streamwise vorticity for the interior $§§
tip flow field. The inboard boundary treatment outlined above 1s similar to éﬁﬁ
the one proposed in Ref. 4. It allows through-flow through the inboard :&?
boundaries, and permits these boundaries to be placed closer to the tip. °
The boundary condition along boundary BC, the blade, was the no-slip ;ﬁﬁ
condition on a solid surface. To satisfy this condition, the normal gradient %ﬁ%
of the scalar potential (the normal velocity) was set to cancel the normal Eﬁﬁ
component of Vg. In the coupled vector potential and vorticity equations the ®
normal component of the rotational velocity was set to zero, and the tangential 5§§
component was set equal and opposite to the tangential component of the %3;
velocity generated by the scalar potential and the vector field 53. These Eg?
conditions allowed an implicit specification of the vector potential and the L
vorticity on the no-slip boundary (as discussed in Section 2.10). The Eig
resultant secondary velocity field satisfies the no-slip conditions on the Qk$
boundary. The streamwise velocity was also set to zero at the solid boundary. §;¥
Far field conditions were specified on boundary AD. The streamwise ;'
velocity was extrapolated from the interior flow field. The scalar potential ?&ﬁ
was set to a constant, so that the tangential component of the ¢-contribution ;E::::
to the irrotational velocity was zero. This condition allowed outflow through ﬁ&&
the boundary due to the displacement effect of the boundary layers on the _‘_‘
blade. The vector potential was varied linearly between its values at A and D %ﬁﬁ
as obtained from the inboard boundary conditions described above, and the :ﬁg
streamwise vorticity was set to zero. Because Vs was assumed to be an &k}
inviscid cross-flow velocity field, the angle of incidence of the flow and the f!-
global effect of the geometry were included automatically. 5&3
It should be noted that the far field boundary condition was the main ﬁg;
reason for including Vs in the secondary flow velocity decomposition. 1In ﬂﬁﬂ
previous tip vortex calculations (Refs. 2-4), the effect of the angle of ;;?
incidence of the flow had been included in the boundary condition on the vector kés
i
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potential, and the effect of the global geometry had not been taken into
account. This effect is ifmportant because of the proximity of the outer
boundary to the tip. As a result, the tip vortex in those previous
calculations was driven too strongly by the outer boundary conditions. The
present boundary conditions avoid this problem, and permit the outer boundary
to be relatively close to the blade surface.

3. RESULTS

To quantitatively assess the capability of the forward-marching analysis
to compute the tip vortex generation process, results of the computations are
compared with experimental data for tip vortex generation. Such data are not
widely available, but do exist (e.g. Gray et al. (Ref. 1), Francis and Kennedy
(Ref. 12), and Chigier and Corsiglia (Ref. 13)). In the present study, two
flow cases for tip vortex generation on a model helicopter blade in hover are
studied, for which data at pitch angles of 6.18° and 11.4° are given by Gray et
al. (Ref. 1). A third case addresses the computation of flow downstream of the
blade. The blade is straight, with an NACA 0012 untwisted airfoil section and

a rounded tip (cf. Fig. 2). The important geometric and flow parameters are:

Tip radius/blade chord = 4.8

Pitch angle = 6.18° and 11.4°
Reynolds number (based on tip velocity and chord) = 736000

Mach number (based on tip velocity) = 0.25

The experimental data consist of static pressure measurements on the blade
surface in the tip region. The calculations were performed in two steps.
First an inviscid (potential) flow field was generated. Then the viscous flow
analysis was performed using the streamwise pressure gradient and cross-plane

velocity vector field obtained from the inviscid flow field.

3.1 The Inviscid Flow Calculations

The inviscid flow field was generated using a panel method code developed
by Hess (Ref. 14). The calculations were done for a non-rotating blade. Since

the region of interest was the tip region, the panel code was applied to a
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symmetric "wing" with a half-span of 3 ¢ (where ¢ denotes the blade chord), at $$
angles of incidence of 6.18° and 11.4°. Increasing the wing span did not :??
appreciably alter the inviscid flow field near the tip. 1280 panels were used :;”
on the lifting part of the wing (with a higher panel density near the leading h&
edge and the tip), 40 panels on the non-lifting tip-body, and 320 panels in the :gf
wake. Figures 4 and 5 show the resulting chordwlse and spanwise pressure '?ﬂ
distributions on the blade, as obtained from the velocities computed at the fﬁ
panel centers. In these figures, x is a chordwise coordinate (x/c = 0 at the g;%
leading edge and x/c = 1 at the trailing edge), while y is a spanwise ﬁﬁ
coordinate (y/c = O at the symmetry plane and y/c = 3 at the tip). Two ;&%
problems arose in the computation of the inviscid field:
&
(1) Since the panel method used is a first-order method, the inviscid g;
velocity field i{s not smooth near the blade surface. ;3§
(ii) The inviscid flow around the tip is nonunique, because it is not known %\
a priori where the wake leaves the tip body. Since no empirical ‘§§
information is to be used in the calculations, the ambiguity cannot be &€:
resolved. For the present calculation, the tip half-body of revolution -
is treated as a nonlifting body. As a consequence, the transverse SBE
inviscid velocities around the tip are large, especially in the .3?
vicinity of the trailing edge, leading to unrealistic pressures. é;;
The above problems imply that the computed inviscid field will not be accurate %?'
close to the blade surface. A short distance away from the surface, however, gﬁ
the inviscid field is well-behaved. And since the inviscid field is used only i?ﬁ
to generate an approximate streamwise pressure gradient and an outer boundary 1&
cross—-plane velocity vector field for the viscous flow analysis, it is aﬁ
acceptable to ignore the 1inaccurate part of the Inviscid field, and to use éﬁ'
interpolation to regenerate a smooth field near the blade surface. Figure 6 ﬁg
shows contours of the inviscid pressure field so obtained on the suction side o
of the blade tip surface. The left-most part of this figure shows the location :§$
of both the region on the suction surface on which the computational results ‘QQ
are presented and the innermost rectangle in which experimental data are ﬁﬁ
available (data taken closer to the leading edge are not included in the !
present data comparison). The latter region is also indicated by a dashed Sé?
A
b
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rectangle in the middle part of Fig. 6, which shows contours of the computed

inviscid pressure distribution. The comparison with the experimental data from
Gray et al. (Ref. 1) shows clearly that the inviscid field does not contain a
tip vortex, and that the viscous pressure relief near the trailing edge of the
blade 1is missing.

3.2 The Viscous Flow Calculation for 6.18° Incidence

The viscous flow calculation was performed in the tip region of the blade
described above. As mentioned in Section 2.l1, the marching direction
coincided with the chordwise direction. Figure 2 shows a perspective view of
the blade geometry near the tip, and Fig. 3 shows the cross—section of the
blade tip and the computational grid at a typlcal streamwise station. This
latter figure also shows the extent of the computational domain: the inboard
boundaries (AB and CD in Fig. 3) were located at a distance 0.4 ¢ from the tip,
while the outer boundary (AD in Fig. 3) was located a distance 0.3 ¢ away from
the blade surface.

A computational grid of 120 streamwise stations and a 47x40 cross-plane
grid was used (totaling 225,600 grid points). Grid points were clustered in
regions of high flow gradients, such as near the blade surface and in the tip
region (cf. Fig. 3). The computation was started at a distance of 0.15 ¢ from
the leading edge of the blade with an assumed initial boundary layer thickness
of 0.003 c. Given this boundary layer thickness, an initial streamwise
velocity distribution was constructed using a standard boundary layer profile.
The marching scheme was then applied to the initial station without
updating the streawise velocity, to obtain a consistent set of initial
distributions of the dependent variables, from which the actual marching
procedure was started. The last station was at 0.06 ¢ from the trailing edée
of the blade. The computer run time for this particular tip vortex flow field
computation was about 7 minutes on a CRAY-1 computer system with a partially
vectorized code. Results of the computation, which was performed under the
operating conditions specified above, but for a non-rotating blade, are shown
in Figs. 7-11.

Figure 7 shows the development of the tip vortex computed by the code in
terms of streamwise velocity contours. Computations from four streamwise

stations (x/c = 0.57, 0.74, 0.84 and 0.94, where x is the distance from the
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leading edge) were chosen to display the development of the tip vortex in the
tip region, which extends 0.1l ¢ in the spanwise direction. The basic flow
mechanisms that result in the generation of the tip vortex have been described
by Govindan et al. (Ref. 3). These mechanisms are the transport of low
momentum fluid from the pressure side boundary layer to the suction side by the
trangverse velocity, the accumulation of this low momentum fluid on the suction
side of the tip region, and the roll-up of this accumulated fluid into the tip
vortex.

That, indeed, the flow in the tip region rolls up into the tip vortex is
clearly visualized by the vector plots of the transverse velocity field in the
tip region (Fig. 8). The large transverse velocities (up to about 80% of the
free stream velocity at x/c = 0.94) around the tip that convect the low
momentum fluid from the pressure side to the suction side are also seen.

Figure 9 shows a vector plot of the cross-plane velocities at x/c = 0.94 in the
full computational domain. The flow through the inboard boundaries (AB and CD
in Fig. 3) is clearly visible, indicating the effectiveness of the inboard
boundary conditions described in Section 2.11. Contour plots of the computed
tranverse pressure fields are shown in Fig. 10, The low pressure region near
the tip can be seen clearly, as can the development of a low pressure region
associated with the tip vortex. This low pressure region would determine the
cavitation characteristics of the tip flow field.

At this point, it should be noted that the tip vortex generation process
has been calculated from a set of three—dimensional, viscous flow equations
which have a no-slip condition at the blade surface. The vortex generation and
roll-up is a result of the secondary flow separation and can be analyzed from a
consideration of the basic physical phenomena without resorting to empirical

models.

3.3 Data Comparison for 6.18° Incidence

Figure 11 shows a streamwise contour plot of the computed pressure field
on the suction side of the blade. This pressure field 1s compared with the
inviscid pressure field discussed in Section 3.1 and with the experimental data

of Gray et al. (Ref. 1). The following ohservations can be made:




(1) The computed viscous flow field is qualitatively correct.

(i1) There 1s quantitative agreement with the experimental data in the

inboard pressure distribution, the spanwise variation of the pressure
near the inboard boundary, and the pressure variation across the tip

vortex, although this vortex forms too far aft on the blade.

These observations are in sharp contrast with the observations made for the

inviscid flow field (see Section 3.1). Clearly, the forward-marching analysis

is capable of predicting not only the qualitative features of the tip vortex

generation process, but also the quantitative features. Several aspects of the

present analysis, however, need refinement:

(a)

(b)

(e)

Initial conditions: 1In essence, the initial cond?tions are obtained by

adding a boundary layer profile to the inviscid velocity field at the
first station (see Section 3.2). The spanwise variation of the initial

boundary layer thickness has not been accounted for.

Grid resolution: To capture the turbulent boundary layer (which is very

thin, especially on the pressure side of the blade and on the tip), a
very fine mesh is needed near the blade surface. When the tip vortex
forms, a fine grid is also required in the vortex itself. Although the
present grid is relatively fine (cf. Fig. 3), it is still somewhat of a
compromise between the above requirements. A solution-adaptive grid
generation technique may be required to accommodate a sufficient number
of grid points in the boundary layer (whose thickness varies both in
chordwise and in spanwise direction) and in the tip vortex without a

substantial Iincrease in the total number of grid points.

Turbulence model: As described in Section 2.7, the turbulence model

used is an algebraic eddy viscosity model based on an appropriate flow
field length scale. Although the turbulence model determines the state
of the boundary layer being swept around the tip to create the tip
vortex, this flow is wall flow where the length scale is known to be

proportional to distance from the wall. Once the tip vortex separates

from the wall, the major effect may be secondary flow rather than



turbulent effects per se. Therefore, the simple turbulence model may be
appropriate. A more complex model could, however, bhe included in the

current computer code.

(d) Streamwise pressure gradient: As mentioned in Section 3.1, the present

inviscid flow field lacks smoothness and accuracy in the vicinity of the
blade surface. As a consequence, the streamwise inviscid pressure
gradient used as input to the viscous flow analysis is not as good as it
could be. The use of a higher-order panel method and a refined tip

treatment may improve the situation.

(e) Rotation: The calculations were performed for a non-rotating blade.
Previous experience (Ref. 3) indicates that the effect of rotation on
the tip vortex generation is small (though not unnoticable). The main
problems are the estimate of the streamwise inviscid pressure gradient

and the far-field boundary conditions.

Preliminary studies have indicated that the above-mentioned aspects of the
analysis do not have a strong effect on the computation of the tip vortex
generation process, but may be important to improve the quantitative agreement

with the experimental data.

3.4 Computed Results for 11.4° Incidence

In addition to data for a blade pitch angle of 6.18°, Gray et al. (Ref. 1)
provides experimental data for a blade pitch angle of 11.4°. Therefore, a
second calculation was done, similar to the first one, but for the
(non-rotating) blade at an angle of incidence of a = 11.4° instead of
a = 6.18°, The computation was halted at a distance of 0.1l ¢ from the
trailing edge of the blade, because streamwise separation was encountered
further downstream. Results of this computation are shown in Figs. 12-15.

Figure 12 shows a streamwise contour plot of the computed viscous pressure
field on the suction side of the blade, compared with the (computed) inviscid
pressure distribution and the experimental data of Gray et al. (Ref. l). The
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agreement of the computed results with the experimental data is similar to the Egg
one discussed in Section 3.3 for the 6.18° angle of incidence case. A ;g$
comparison of Figs. 1l and 12 shows that the tip vortex is much stronger than gﬁ
in the previous case, which is also illustrated in Figs. 13-15. Figure 13 gh
shows a vector plot of the transverse velocity field, while Figs. 14 and 15 &k
show contour plots of the streamwise velocity, the inviscid pressure :gg
coefficient, and the viscous pressure coefficient in the tip region at the 2&:
streamwise station x/c = 0.89. The low pressure region that is associated with P
the tip vortex is clearly visible, and a comparison with the inviscid pressure a&
distribution once again shows that the inviscid field does not contain a tip 1?&;
vortex. 3§
The above results reinforce the conclusions drawn in Section 3.3, and ,H
build up confidence in the results obtained from the forward marching analysis. ﬁg
PUS
e
3.5 Additional Results Downstream of the Trailing Edge e
.
A natural continuation of the calculations discussed in the previous ég
sections would be to continue the computation downstream of the blade trailing fé%
edge. A general capability would allow for computation of the flow downstream ;i
of swept trailing edges, and data is available for this type of configuration. :;
Although the capability for treating swept trailing edges was under zﬁi
investigation in a related program, this capability was not completed for use Eﬁi
in the present study. Consequently, the present study considers a test case :ﬁﬁ
having an unswept trailing edge. To demonstrate the capability of the ;&
forward-marching procedure to compute the development of the tip vortex as:
downstream of an unswept trailing edge, a calculation was performed for the gg
blade described in Section 3.2, at an angle of incidence of 6.18°. The ;J
inviscid flow field was not used in this calculation; the streamwise pressure ’:,
gradient was set to zero, and the far field boundary conditions were included it
in the vector potential Y. A simple turbulence model was used in the region A ﬁ
downstream of the trailing edge. Fig. 16 shows the results of this ._v
calculation. >
Streamwise velocity contour plots, shown at three streamwise stations
(x/¢ = 1,0, 1.7, and 2.5), illustrate the dissipation of the vortex.
It should be emphasized that these results are of a qualitative nature.
To obtain results that can be compared with experimental data, it is necessary
to:
-19-




Include the inviscid streamwise pressure gradient in the streamwise
momentum equation,

(11) Include the effect of the inviscid transverse plane velocity
components in the far field boundary conditions (by including these
velocity components in the transverse plane velocity decomposition),

(1i1) Choose an appropriate turbulence model.

The first two aspects require additional work on the interface between the
inviscid flow solver and the forward marching scheme in the region downstream
of the blade trailing edge. As far as the third aspect is concerned,
experience with the use of different turbulence models has shown that although
the turbulence model does not greatly affect the formulation of the tip vortex,
it does play an important role in the speed with which the tip vortex
dissipates once it has formed and has separated from the wall. Therefore, a
proper turbulence model should be chosen for the region downstream of the blade

tralling edge before a data comparison is performed.

4. CONCLUSIONS

Previous work (Refs. 2-4) has shown the feasibility of utilizing a
three—-dimensional forward marching analysis for the tip vortex generation
problem. The present analysis has clearly demonstrated the capability of the
forward-marching procedure to compute the quantitative features of the tip
vortex flow field without the use of empirical information. Comparison with
experimental data has shown good agreement. It is evident that the procedure
can compute the low pressure region in the flow associated with the tip vortex,
and can help in identifying regions of the flow field that may be susceptible
to cavitation.

The computations are economical compared to computing solutions of the
full Navier-Stokes equations for tip vortex flow fields, which makes the
procedure suitable for the design and analysis of ship propeller blades.

Future efforts are aimed at refining the current analysis, and at building
a high level of confidence in the results obtained from the analysis, by making
additional quantitative comparisons of the computations of the tip flow fleld

with experimental data.
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